
ESP: Pursuit Evasion on Series-Parallel Graphs∗

(Extended Abstract)
K. Daniel1 R. Borie2 S. Koenig1 C. Tovey3

1Univeristy of Southern California
Computer Science

{kfdaniel,skoenig}@usc.edu

2University of Alabama
Computer Science
borie@cs.ua.edu

3Georgia Tech
ISYE

craig.tovey@isye.gatech.edu

ABSTRACT
We develop a heuristic approach, called ESP, that solves large
pursuit-evasion problems on series-parallel (that is, treewidth-2)
graphs quickly and with small costs. It exploits their topology by
performing dynamic programming on their decomposition graphs.
We show that ESP scales up to much larger graphs than a strawman
approach based on previous results from the literature.

Categories and Subject Descriptors
I.2.11 [Distributed AI]: Multi-Agent Systems

General Terms
Algorithms, Experimentation, Theory

Keywords
Pursuit Evasion, Robotics, Series-Parallel Graphs, Treewidth

1. INTRODUCTION
We consider scenarios where robots search a known environment

(such as a cave system) to ensure that no evaders are hiding in it.
The environment can be modeled as a graph with edges that have
lengths and widths. The evaders can hide anywhere on the vertices
or edges. The evaders can move arbitrarily fast, and they cannot
be seen by the robots unless caught. They get caught only if they
collide with one or more robots on a vertex or a number of robots
at the same point on an edge that is no smaller than the width of
the edge. The robots move at unit speed. Their travel times or dis-
tances are thus equal to the lengths of their paths. A solution of the
pursuit-evasion problem is a movement strategy for a given num-
ber of robots with given start vertices on a given graph that enables
them to clear the graph of evaders. An optimal solution minimizes
some cost objective, such as the sum of travel distances or their
task-completion time. This pursuit-evasion model is called edge
searching [5]. Many variants of edge searching with edge widths
one have been studied in the literature [3] but the typical results
are the same: polynomial algorithms for determining the minimal
number of robots required to clear a given tree, NP-hardness for de-
termining the minimal number of robots required to clear a general
graph, and no algorithms for minimizing distance or time.

∗This material is based upon work supported by, or in part by,
NSF under contract/grant number 0413196, ARL/ARO under con-
tract/grant number W911NF-08-1-0468 and ONR in form of a
MURI under contract/grant number N00014-09-1-1031.

Cite as: ESP: Pursuit Evasion on Series-Parallel Graphs (Extended Ab-
stract), K. Daniel, R. Borie, S. Koenig, C. Tovey, Proc. of 9th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS 2010), van
der Hoek, Kaminka, Lespérance, Luck and Sen (eds.), May, 10–14, 2010,
Toronto, Canada, pp.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

e1

e3

e2

e8

e7
e6

e5

e4

t1 t2

Figure 1: Series-parallel graph

If the vertex connectivity of some part of a graph exceeds the
number of robots, the evaders can always avoid capture. We there-
fore focus on graphs whose subgraphs can always be cut at a lim-
ited number of vertices, namely series-parallel (that is, treewidth-
2) graphs [2]. Series-parallel graphs are defined recursively by
starting with single edges as base graphs and successively building
larger graphs using series and parallel compositions. Each compo-
sition joins two smaller graphs by fusing at most two designated
vertices, called terminal vertices. The structure of a series-parallel
graph can be represented by a decomposition tree, whose nodes
correspond to subgraphs and which can be constructed in linear
time [6]. Solving our pursuit-evasion problems on series-parallel
graphs is NP-hard [1]. We have therefore developed a heuristic ap-
proach, called ESP, that solves large pursuit-Evasion problems on
Series-Parallel graphs with n edges and r robots in time O(nr6)
and with small distance or time by performing dynamic program-
ming on their decomposition trees. ESP has the advantage over
other pursuit-evasion algorithms that it allows for edges of differ-
ent widths and for different cost objectives.

2. CONCEPTUAL OVERVIEW OF ESP
ESP is a recursive approach for clearing a graph with a given de-

composition tree and given start and end locations of the robots
at the terminal vertices. The movement strategy of ESP clears
all edges without giving evaders the opportunity to recontaminate
edges that have already been cleared. ESP decomposes the graph
into subgraphs and then computes and combines movement strate-
gies on the subgraphs to clear the graph with small cost. This re-
sults in ESP optimizing over a subset of possible movement strate-
gies, namely those that are consistent with the given decomposition
of a graph G into subgraphs G1 and G2. Informally, by consistent
we mean that either the robots first clear all of one subgraph and
then all of the other subgraph or split into two groups that clear
both subgraphs separately but simultaneously. Formally, we mean
the following: (1) Each robot begins at a terminal vertex of G. (2)
Each robot ends at a terminal vertex of G. (3) Once a robot begins
to clear the interior of a subgraph Gi no robot in Gi may leave Gi

until Gi has been cleared. (4) No robot may enter the interior of a
subgraph after it has been cleared.

1519

1519-1520

Our design philosophy results in a natural but non-trivial heuris-
tic approach to pursuit evasion, which we illustrate by example.
Consider the series-parallel graph G in Figure 1 and make the fol-
lowing assumptions: Four robots start at terminal vertex t1. Two
robots must end at terminal vertex t1 and the other two robots at
terminal vertex t2 after clearing the graph. The graph is the parallel
composition of subgraphs G1 and G2. G1 is the parallel compo-
sition of three edges, namely e1 of width two and e2 and e3 of
width one. G2 is the series composition of five edges that form a
path, namely e4 to e8, all of width one. In this example our goal
is to find a movement strategy with a small sum of travel distances.
An example of an inconsistent movement strategy for clearing G is
this: At time 0, send three robots from t1 to t2 along e1. At time
1, send one robot from t2 to t1 along e8 to e4. At time 6, send
one robot from t1 to t2 along e2 and one robot from t2 to t1 along
e3. This movement strategy is inconsistent with the given decom-
position of G into G1 and G2 since robots first clear part of G1,
then a robot that helped to clear G1 clears G2 and finally robots
clear the rest of G1. The consistent movement strategies fall into
the following three categories.

Category 1: Clear G1, then clear G2. After clearing G1, each
robot must be at t1 or t2. Let r′′1 denote the number of robots at t1
after clearing G1. There must be at least one robot each at t1 and t2
since otherwise an evader could sneak into G1 from G2. Therefore,
r′′1 = 1, 2, 3. The sum of travel distances is minimized as follows.
Case r′′1 = 1: At time 0, send two robots from t1 to t2 along e1

and one robot from t1 to t2 along e2; at time 1, send one robot from
t2 to t1 along e3; and at time 2, send one robot from t1 to t2 along
e3. G1 is cleared at time 3. We do not consider the graph cleared
at time 2.5 since the robots are not yet where they are supposed to
be after clearing the graph. At time 3, send one robot from t2 to t1
along e8 to e4. The resulting task-completion time for clearing the
graph is 8 and the sum of travel distances is 10. Case r′′1 = 2: At
time 0, send two robots from t1 to t2 along e1 and one robot from
t1 to t2 along e2; and at time 1, send one robot from t2 to t1 along
e3. G1 is cleared at time 2. At time 2, send one robot from t1 to
t2 along e4 to e8 and one robot from t2 to t1 along e8 to e4. The
resulting task-completion time for clearing the graph is 7 and the
sum of travel distances is 14. Case r′′1 = 3 : At time 0, send two
robots from t1 to t2 along e1 and one robot from t1 to t2 along e2;
and at time 1, send two robots from t2 to t1 along e3. G1 is cleared
at time 2. At time 2, send one robot from t1 to t2 along e4 to e8.
The resulting task-completion time for clearing the graph is 7 and
the sum of travel distances is 10.

Category 2: Clear G2, then clear G1. Similar to the previous
category.

Category 3: Clear G1 and G2 separately but simultaneously.
In this case we divide the robots into two teams and optionally
robots to guard one or both of the terminal vertices. Team 1 clears
G1, and team 2 clears G2. If a terminal vertex is not guarded, then
the teams must agree that no evader should escape G (to an exterior
area) via the terminal vertex or that no evader should find refuge
in G (from an exterior area) via the terminal vertex. We call this
agreement the state of the terminal vertex. For example, a graph
of two parallel edges of width one could be cleared by two teams
of one robot each by sending both robots from t1 to t2 along each
edge because both teams ensure no escape at t1 and no refuge at t2
- the two robots are correctly coordinated. On the other hand, the
graph cannot be cleared by two teams of one robot each by sending
one robot from t1 to t2 along one edge and the other robot from t2
to t1 along the other edge, because the first robot ensures no escape
at t1 and no refuge at t2 while the second robot ensures no escape
at t2 and no refuge at t1 - the robots are not correctly coordinated.

t1 t2

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

T
im

e
(s

ec
o

n
d

s)

i = # of rungs

Ladder Graphs

ESP
Strawman

Figure 2: Runtime on ladder graphs

For our example, one robot must initially be stationed at t1. There
must be at least two robots in team 1 (due to the edge of width two)
and one robot in team 2. The sum of travel distances is minimized
as follows. At time 0, send the robot from team 2 from t1 to t2
along e4 to e8 and both robots from team 1 from t1 to t2 along e1;
at time 1, send a robot from team 1 from t2 to t1 along along e2;
at time 2, send a robot from team 1 from t1 to t2 along e3; and at
time 3, send a robot from team 1 from t2 to t1 along e3 (or e1 or
e2). The resulting task-completion time for clearing the graph is 5
and the sum of travel distances is 10.

3. EXPERIMENTAL RESULTS
We created a strawman approach to evaluate ESP against, which

is based on the idea that “recontamination does not help to clear a
graph” [4]. The strawman approach determines the minimal num-
ber of robots required to clear arbitrary graphs but does not de-
termine movement strategies, neither for minimizing distance nor
time. We compare ESP and the strawman approach on ladder
graphs with edges of lengths and widths one with all robots start-
ing at t1. At most 3 robots are required to clear ladder graphs of
any size. Both ESP and the strawman approach correctly mini-
mized the number of robots required to clear ladder graphs. We use
Li to denote the ladder graph with i rungs. For ladder graphs Li

for i > 2 with 3 robots, ESP cleared Li with distance dESP ≤
7i− 11, which is about a factor of 7/3 worse than the lower bound
dOPT ≥ 3i − 2 given by the number of edges. ESP cleared Li in
time tESP = 4i − 6, which is about a factor of 2 worse than the
lower bound tOPT ≥ 2i given by twice the distance from the start
to the farthest vertex (robots must end at t1 in this case). The run-
times of ESP and the strawman approach are compared in Figure 2.
The strawman approach could solve graphs only up to L68 within
10 seconds whereas ESP could solve graphs up to L295 (where it
hit memory limitations) since its runtime increased much less. For
the first 5 ladder graphs we were able to compute the optimal so-
lutions in time and distance by brute force search and determined
that ESP performed optimally.

4. REFERENCES
[1] R. Borie, C. Tovey, and S. Koenig. Algorithms and complexity results

for pursuit-evasion problems. In Proceedings of the International Joint
Conference on Artificial Intelligence, pages 59–66, 2009.

[2] R. Duffin. Topology of series-parallel networks. Journal of
Mathematical Analysis and Applications, 10:303–318, 1965.

[3] R. Fomin and D. Thilikos. An annotated bibliography on guaranteed
graph searching. Theoretical Computer Science, 399(3):236–245,
2008.

[4] A. LaPaugh. Recontamination does not help to search a graph. Journal
of the ACM, 40(2):224–245, April 1993.

[5] T. Parsons. Pursuit-evasion in a graph. In Theory and Applications of
Graphs, pages 426–441. Springer-Verlag, 1976.

[6] J. Valdes, R. Tarjan, and E. Lawler. The recognition of series parallel
digraphs. SIAM Journal on Computing, 11(2):298–313, May 1982.

1520

